367 research outputs found

    The body-size dependence of mutual interference

    Get PDF
    The parameters that drive population dynamics typically show a relationship with body size. By contrast, there is no theoretical or empirical support for a body-size dependence of mutual interference, which links foraging rates to consumer density. Here, I develop a model to predict that interference may be positively or negatively related to body size depending on how resource body size scales with consumer body size. Over a wide range of body sizes, however, the model predicts that interference will be body-size independent. This prediction was supported by a new data set on interference and consumer body size. The stabilizing effect of intermediate interference therefore appears to be roughly constant across size, while the effect of body size on population dynamics is mediated through other parameters

    EFFECTS OF MANAGEMENT PRACTICES ON GRASSLAND BIRDS: GOLDEN EAGLE

    Get PDF
    Information on the habitat requirements and effects of habitat management on grassland birds were summarized from information in more than 4,000 published and unpublished papers. A range map is provided to the breeding, year-round, and nonbreeding ranges in the United States and southern Canada. Although birds frequently are observed outside the breeding range indicated, the maps are intended to show areas where managers might concentrate their attention. It may be ineffectual to manage habitat at a site for a species that rarely occurs in an area. The species account begins with a brief capsule statement, which provides the fundamental components or keys to management for the species. A section on breeding range outlines the current breeding distribution of the species in North America. The suitable habitat section describes the breeding habitat and occasionally microhabitat characteristics of the species, especially those habitats that occur in the Great Plains. Details on habitat and microhabitat requirements often provide clues to how a species will respond to a particular management practice. A table near the end of the account complements the section on suitable habitat, and lists the specific habitat characteristics for the species by individual studies. A special section on prey habitat is included for those predatory species that have more specific prey requirements. The area requirements section provides details on territory and home range sizes, minimum area requirements, and the effects of patch size, edges, and other landscape and habitat features on abundance and productivity. It may be futile to manage a small block of suitable habitat for a species that has minimum area requirements that are larger than the area being managed. The Brown-headed Cowbird (Molothrus ater) is an obligate brood parasite of many grassland birds. The section on cowbird brood parasitism summarizes rates of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below

    EFFECTS OF MANAGEMENT PRACTICES ON GRASSLAND BIRDS: PRAIRIE FALCON

    Get PDF
    Information on the habitat requirements and effects of habitat management on grassland birds were summarized from information in more than 4,000 published and unpublished papers. A range map is provided to indicate the breeding, year-round, and nonbreeding ranges in the United States and southern Canada. Although birds frequently are observed outside the breeding range indicated, the maps are intended to show areas where managers might concentrate their attention. It may be ineffectual to manage habitat at a site for a species that rarely occurs in an area. The species account begins with a brief capsule statement, which provides the fundamental components or keys to management for the species. A section on breeding range outlines the current breeding distribution of the species in North America. The suitable habitat section describes the breeding habitat and occasionally microhabitat characteristics of the species, especially those habitats that occur in the Great Plains. Details on habitat and microhabitat requirements often provide clues to how a species will respond to a particular management practice. A table near the end of the account complements the section on suitable habitat, and lists the specific habitat characteristics for the species by individual studies. A special section on prey habitat is included for those predatory species that have more specific prey requirements. The area requirements section provides details on territory and home range sizes, minimum area requirements, and the effects of patch size, edges, and other landscape and habitat features on abundance and productivity. It may be futile to manage a small block of suitable habitat for a species that has minimum area requirements that are larger than the area being managed. The Brown-headed Cowbird (Molothrus ater) is an obligate brood parasite of many grassland birds. The section on cowbird brood parasitism summarizes rates of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below

    Gillespie eco-evolutionary models (GEMs) reveal the role of heritable trait variation in eco-evolutionary dynamics

    Get PDF
    Heritable trait variation is a central and necessary ingredient of evolution. Trait variation also directly affects ecological processes, generating a clear link between evolutionary and ecological dynamics. Despite the changes in variation that occur through selection, drift, mutation, and recombination, current ecoevolutionary models usually fail to track how variation changes through time. Moreover, eco-evolutionary models assume fitness functions for each trait and each ecological context, which often do not have empirical validation. We introduce a new type of model, Gillespie eco-evolutionary models (GEMs), that resolves these concerns by tracking distributions of traits through time as ecoevolutionary dynamics progress. This is done by allowing change to be driven by the direct fitness consequences of model parameters within the context of the underlying ecological model, without having to assume a particular fitness function. GEMs work by adding a trait distribution component to the standard Gillespie algorithm – an approach that models stochastic systems in nature that are typically approximated through ordinary differential equations. We illustrate GEMs with the Rosenzweig–MacArthur consumer–resource model. We show not only how heritable trait variation fuels trait evolution and influences ecoevolutionary dynamics, but also how the erosion of variation through time may hinder eco-evolutionary dynamics in the long run. GEMs can be developed for any parameter in any ordinary differential equation model and, furthermore, can enable modeling of multiple interacting traits at the same time. We expect GEMs will open the door to a new direction in eco-evolutionary and evolutionary modeling by removing long-standing modeling barriers, simplifying the link between traits, fitness, and dynamics, and expanding eco-evolutionary treatment of a greater diversity of ecological interactions. These factors make GEMs much more than a modeling advance, but an important conceptual advance that bridges ecology and evolution through the central concept of heritable trait variation

    Gillespie eco-evolutionary models (GEMs) reveal the role of heritable trait variation in eco-evolutionary dynamics

    Get PDF
    Heritable trait variation is a central and necessary ingredient of evolution. Trait variation also directly affects ecological processes, generating a clear link between evolutionary and ecological dynamics. Despite the changes in variation that occur through selection, drift, mutation, and recombination, current ecoevolutionary models usually fail to track how variation changes through time. Moreover, eco-evolutionary models assume fitness functions for each trait and each ecological context, which often do not have empirical validation. We introduce a new type of model, Gillespie eco-evolutionary models (GEMs), that resolves these concerns by tracking distributions of traits through time as ecoevolutionary dynamics progress. This is done by allowing change to be driven by the direct fitness consequences of model parameters within the context of the underlying ecological model, without having to assume a particular fitness function. GEMs work by adding a trait distribution component to the standard Gillespie algorithm – an approach that models stochastic systems in nature that are typically approximated through ordinary differential equations. We illustrate GEMs with the Rosenzweig–MacArthur consumer–resource model. We show not only how heritable trait variation fuels trait evolution and influences ecoevolutionary dynamics, but also how the erosion of variation through time may hinder eco-evolutionary dynamics in the long run. GEMs can be developed for any parameter in any ordinary differential equation model and, furthermore, can enable modeling of multiple interacting traits at the same time. We expect GEMs will open the door to a new direction in eco-evolutionary and evolutionary modeling by removing long-standing modeling barriers, simplifying the link between traits, fitness, and dynamics, and expanding eco-evolutionary treatment of a greater diversity of ecological interactions. These factors make GEMs much more than a modeling advance, but an important conceptual advance that bridges ecology and evolution through the central concept of heritable trait variation

    Ecological pleiotropy and indirect effects alter the potential for evolutionary rescue

    Get PDF
    Invading predators can negatively affect naïve prey populations due to a lack of evolved defenses. Many species therefore may be at risk of extinction due to overexploitation by exotic predators. Yet the strong selective effect of predation might drive evolution of imperiled prey toward more resistant forms, potentially allowing the prey to persist. We evaluated the potential for evolutionary rescue in an imperiled prey using Gillespie eco‐evolutionary models (GEMs). We focused on a system parameterized for protists where changes in prey body size may influence intrinsic rate of population growth, space clearance rate (initial slope of the functional response), and the energetic benefit to predators. Our results show that the likelihood of rescue depends on (a) whether multiple parameters connected to the same evolving trait (i.e., ecological pleiotropy) combine to magnify selection, (b) whether the evolving trait causes negative indirect effects on the predator population by altering the energy gain per prey, (c) whether heritable trait variation is sufficient to foster rapid evolution, and (d) whether prey abundances are stable enough to avoid very rapid extinction. We also show that when evolution fosters rescue by increasing the prey equilibrium abundance, invasive predator populations also can be rescued, potentially leading to additional negative effects on other species. Thus, ecological pleiotropy, indirect effects, and system dynamics may be important factors influencing the potential for evolutionary rescue for both imperiled prey and invading predators. These results suggest that bolstering trait variation may be key to fostering evolutionary rescue, but also that the myriad direct and indirect effects of trait change could either make rescue outcomes unpredictable or, if they occur, cause rescue to have side effects such as bolstering the populations of invasive species

    The Effects of Management Practices on Grassland Birds: An Introduction to North American Grasslands and the Practices Used to Manage Grasslands and Grassland Birds

    Get PDF
    Summary The Great Plains of North America is defined as the land mass that encompasses the entire central portion of the North American continent that, at the time of European settlement, was an unbroken expanse of primarily herbaceous vegetation. The Great Plains extend from central Saskatchewan and Alberta to central Mexico and from Indiana to the Rocky Mountains. The expanses of herbaceous vegetation are often referred to as native prairie or native grasslands. Native grasslands share the characteristics of a general uniformity in vegetation structure, dominance by grasses and forbs, a near absence of trees and shrubs, annual precipitation ranging from 25 to 100 centimeters, extreme intra-annual fluctuations in temperature and precipitation, and a flat to rolling topography over which fires can spread. To the west of the Great Plains lie the sagebrush communities of the Great Basin, which extend from British Columbia and Saskatchewan to northern Arizona and New Mexico and from the eastern slopes of the Sierra Nevada and Cascade mountain ranges to western South Dakota. Sagebrush communities share similar characteristics to native grasslands, but their location east of the Rocky Mountains creates a more moderating influence from prevailing westerly winds that affect timing of peak precipitation and growth form of dominant vegetation. Native grasslands and sagebrush communities harbor a diverse array of grassland, wetland, and woodland plant and animal communities that are uniquely adapted to the natural forces of the Great Plains and Great Basin, namely the interactive forces of climate, fire, and grazing. The arrival of European settlers to North America brought profound change to native grassland and sagebrush communities, including the establishment of permanent towns and cities, the proliferation of cropland-based agricultural systems, and the suppression of wildfires. The near extirpation of bison by the 1860s paved the way for dramatic changes in the dominant grazers and a shift in the disturbance patterns that historically influenced vegetation structure. The greatest threat to native grasslands and sagebrush communities in modern times is their loss due to conversion to rowcrop agriculture and to urbanization. Concomitant with habitat loss is a precipitous decline in populations of bird species that evolved with, and are uniquely adapted to, the native grassland and sagebrush habitats. Avian population trends are linked strongly to agricultural land use. Besides outright loss of suitable breeding habitat, agricultural practices affect birds through factors such as pesticide exposure, habitat fragmentation, shifts in predator community composition, and occurrence of brood parasites. Bird populations face other stressors, such as loss of habitat to and behavioral avoidance of urbanized areas, roads, and infrastructure associated with energy production. Despite the many anthropogenic changes to North American grassland and sagebrush communities, some bird species are adaptable and opportunistic in their habitat selection and now utilize one or more human-created habitats. Human-created habitats include pastures, hayfields, agricultural terraces, crop buffer strips, field borders, grassed waterways, fencerows, road rights-of-way, airports, reclaimed coal mines, and planted wildlife cover. Fields of seeded grasslands enrolled in Federal long-term set-aside programs, such as the Conservation Reserve Program in the United States and the Permanent Cover Program in Canada, provide important nesting habitat for grassland bird species. The array of habitats used by birds makes habitat and avian management a complex undertaking, and the scale (for example, local, regional, international) at which management actions can be implemented are such that a universal approach to managing grasslands for the conservation of the entire suite of bird species does not exist. Experienced land managers recognize that it is impossible to manage for all bird species simultaneously, and thus, prioritization is necessary towards those habitats or bird species that the manager or management agency ranks highest for a specific region or management unit. The primary tools available for management are burning, grazing, mowing, herbicide application, and idling, but before choosing a particular practice, a manager will want to consider issues of seasonality, intensity, and frequency. Despite the thousands of studies that are cited in this compendium, much remains unknown about the effects of management practices on bird species. The series of species accounts in this compendium review the current state of knowledge regarding management of grassland and sagebrush bird species and summarize information on the effects of management practices on individual species. The accounts do not give definitive statements on the effects of management practices for any particular species, primarily because there are very few replicated studies in which identical management practices have been applied in the same geographical area with consistent results, which are elements necessary to provide concrete recommendations for the management of a particular species in a particular area. Documentation of the effects of management treatments on individual species through statistically sound methods that incorporate multiple years and locations will further scientists’ and land managers’ knowledge far more than 1–2-year studies that are limited in scope as well as time, but studies of that scope and breadth are rare

    Mutual interference is common and mostly intermediate in magnitude

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interference competition occurs when access to resources is negatively affected by the presence of other individuals. Within a species or population, this is known as mutual interference, and it is often modelled with a scaling exponent, <it>m</it>, on the number of predators. Originally, mutual interference was thought to vary along a continuum from prey dependence (no interference; <it>m </it>= 0) to ratio dependence (<it>m </it>= -1), but a debate in the 1990's and early 2000's focused on whether prey or ratio dependence was the better simplification. Some have argued more recently that mutual interference is likely to be mostly intermediate (that is, between prey and ratio dependence), but this possibility has not been evaluated empirically.</p> <p>Results</p> <p>We gathered estimates of mutual interference from the literature, analyzed additional data, and created the largest compilation of unbiased estimates of mutual interference yet produced. In this data set, both the alternatives of prey dependence and ratio dependence were observed, but only one data set was consistent with prey dependence. There was a tendency toward ratio dependence reflected by a median <it>m </it>of -0.7 and a mean <it>m </it>of -0.8.</p> <p>Conclusions</p> <p>Overall, the data support the hypothesis that interference is mostly intermediate in magnitude. The data also indicate that interference competition is common, at least in the systems studied to date. Significant questions remain regarding how different factors influence interference, and whether interference can be viewed as a characteristic of a particular population or whether it generally shifts from low to high levels as populations increase in density.</p

    Ecological boundaries and constraints on viable eco-evolutionary pathways

    Get PDF
    Evolutionary dynamics are subject to constraints ranging from limitations on what is physically possible to limitations on the pathways that evolution can take. One set of evolutionary constraints, known as ‘demographic constraints’, constrain what can occur evolutionarily due to the demographic or dynamical consequences of evolution leading to conditions that make populations susceptible to extinction. These demographic constraints can limit the strength of selection or the rates of environmental change populations can experience while remaining extant and the trait values a population can express. Here we further hypothesize that the population demographic and dynamic consequences of evolution also can constrain the eco-evolutionary pathways that populations can traverse by defining ecological boundaries represented by areas of likely extinction. We illustrate this process using a model of predator evolution. Our results show that the populations that persist over time tend to be those whose eco-evolutionary dynamics have avoided ecological boundaries representing areas of likely extinction due to stochastic deviations from a deterministic eco-evolutionary expectation. We term this subset of persisting pathways viable eco-evolutionary pathways. The potential existence of ecological boundaries constraining evolutionary pathways has important implications for predicting evolutionary dynamics, interpreting past evolution, and understanding the role of stochasticity and ecological constraints on eco-evolutionary dynamics

    The Effects of Management Practices on Grassland Birds: An Introduction to North American Grasslands and the Practices Used to Manage Grasslands and Grassland Birds

    Get PDF
    Summary The Great Plains of North America is defined as the land mass that encompasses the entire central portion of the North American continent that, at the time of European settlement, was an unbroken expanse of primarily herbaceous vegetation. The Great Plains extend from central Saskatchewan and Alberta to central Mexico and from Indiana to the Rocky Mountains. The expanses of herbaceous vegetation are often referred to as native prairie or native grasslands. Native grasslands share the characteristics of a general uniformity in vegetation structure, dominance by grasses and forbs, a near absence of trees and shrubs, annual precipitation ranging from 25 to 100 centimeters, extreme intra-annual fluctuations in temperature and precipitation, and a flat to rolling topography over which fires can spread. To the west of the Great Plains lie the sagebrush communities of the Great Basin, which extend from British Columbia and Saskatchewan to northern Arizona and New Mexico and from the eastern slopes of the Sierra Nevada and Cascade mountain ranges to western South Dakota. Sagebrush communities share similar characteristics to native grasslands, but their location east of the Rocky Mountains creates a more moderating influence from prevailing westerly winds that affect timing of peak precipitation and growth form of dominant vegetation. Native grasslands and sagebrush communities harbor a diverse array of grassland, wetland, and woodland plant and animal communities that are uniquely adapted to the natural forces of the Great Plains and Great Basin, namely the interactive forces of climate, fire, and grazing. The arrival of European settlers to North America brought profound change to native grassland and sagebrush communities, including the establishment of permanent towns and cities, the proliferation of cropland-based agricultural systems, and the suppression of wildfires. The near extirpation of bison by the 1860s paved the way for dramatic changes in the dominant grazers and a shift in the disturbance patterns that historically influenced vegetation structure. The greatest threat to native grasslands and sagebrush communities in modern times is their loss due to conversion to rowcrop agriculture and to urbanization. Concomitant with habitat loss is a precipitous decline in populations of bird species that evolved with, and are uniquely adapted to, the native grassland and sagebrush habitats. Avian population trends are linked strongly to agricultural land use. Besides outright loss of suitable breeding habitat, agricultural practices affect birds through factors such as pesticide exposure, habitat fragmentation, shifts in predator community composition, and occurrence of brood parasites. Bird populations face other stressors, such as loss of habitat to and behavioral avoidance of urbanized areas, roads, and infrastructure associated with energy production. Despite the many anthropogenic changes to North American grassland and sagebrush communities, some bird species are adaptable and opportunistic in their habitat selection and now utilize one or more human-created habitats. Human-created habitats include pastures, hayfields, agricultural terraces, crop buffer strips, field borders, grassed waterways, fencerows, road rights-of-way, airports, reclaimed coal mines, and planted wildlife cover. Fields of seeded grasslands enrolled in Federal long-term set-aside programs, such as the Conservation Reserve Program in the United States and the Permanent Cover Program in Canada, provide important nesting habitat for grassland bird species. The array of habitats used by birds makes habitat and avian management a complex undertaking, and the scale (for example, local, regional, international) at which management actions can be implemented are such that a universal approach to managing grasslands for the conservation of the entire suite of bird species does not exist. Experienced land managers recognize that it is impossible to manage for all bird species simultaneously, and thus, prioritization is necessary towards those habitats or bird species that the manager or management agency ranks highest for a specific region or management unit. The primary tools available for management are burning, grazing, mowing, herbicide application, and idling, but before choosing a particular practice, a manager will want to consider issues of seasonality, intensity, and frequency. Despite the thousands of studies that are cited in this compendium, much remains unknown about the effects of management practices on bird species. The series of species accounts in this compendium review the current state of knowledge regarding management of grassland and sagebrush bird species and summarize information on the effects of management practices on individual species. The accounts do not give definitive statements on the effects of management practices for any particular species, primarily because there are very few replicated studies in which identical management practices have been applied in the same geographical area with consistent results, which are elements necessary to provide concrete recommendations for the management of a particular species in a particular area. Documentation of the effects of management treatments on individual species through statistically sound methods that incorporate multiple years and locations will further scientists’ and land managers’ knowledge far more than 1–2-year studies that are limited in scope as well as time, but studies of that scope and breadth are rare
    • 

    corecore